ПРИЛОЖЕНИЕ

Приложение 1. Формула Тейлора

Пусть функция f(x) имеет в точке x_0 производные всех порядков до n-го включительно. Тогда при $x \to x_0$ для f(x) справедлива формула Тейлора с остаточным членом в форме Пеано:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!} \cdot (x - x_0) + \frac{f''(x_0)}{2!} \cdot (x - x_0)^2 + \dots + \dots + \frac{f^{(n)}(x_0)}{n!} \cdot (x - x_0)^n + o((x - x_0)^n),$$

где $o\Big((x-x_0)^n\Big)$ — величина более высокого порядка малости, чем $(x-x_0)^n\,.$

Отбросив остаточный член $(x-x_0)^n$, получим приближенную формулу Тейлора:

$$f(x) \approx f(x_0) + \frac{f'(x_0)}{1!} \cdot (x - x_0) + \frac{f''(x_0)}{2!} \cdot (x - x_0)^2 + \dots + \dots + \frac{f^{(n)}(x_0)}{n!} \cdot (x - x_0)^n.$$

Правая часть приближенной формулы называется *многочленом Тейлора* функции f(x), его обозначают как $T_n(x)$. Говоря нестрого, приближенная формула Тейлора $f(x) \approx T_n(x)$ показывает поведение функции в окрестности некоторой точки. Она позволяет заменять в различных математических расчетах (аналитических и численных) произвольную функцию ее многочленом Тейлора. Отметим, что чем ближе точка x к точке x_0 , тем выше точность такой аппроксимации, и эта точность тем выше, чем больше число членов разложения учитывается (рис. $\Pi1.1,a$).

Рассмотрим первые два члена ряда Тейлора:

$$f(x_0) + f'(x_0) \cdot (x - x_0)$$
.

Это выражение является правой частью уравнения касательной к графику функции f(x) в точке x_0 . Среди всех прямых, проходящих через точку x_0 , именно прямая, задаваемая уравнением касательной, наиболее близка к графику функции f(x) при значениях переменных x, близких к x_0 . В малой окрестности точки x_0 линейное приближение произвольной функции f(x) оказывается достаточным для ряда исследований, например устойчивости стационарного состояния динамической системы (рис. $\Pi1.1,6$).

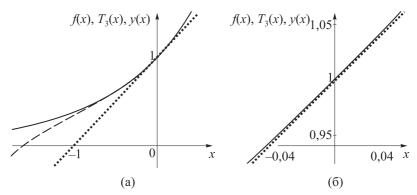


Рис. П1.1. Графики функции $f(x)=e^x$ (—), касательной к нему y(x)=x+1 в точке $x_0=0$ (•••) и многочлена Тейлора функции f(x) третьей степени $T_3(x)=1+x+\frac{1}{2}x^2+\frac{1}{6}x^3$ (—) в окрестности точки $x_0=0$:

- (a) на интервале [-1; 1,05] функция $f(x) = e^x$ хорошо аппроксимируется многочленом $T_3(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3$;
- (б) можно найти достаточно малую окрестность точки $x_0=0$, например интервал [-0.04; 0.04], где функция $f(x)=e^x$ достаточно хорошо аппроксимируется прямой (касательной) y(x)=x+1

Приложение 2.1. Решение уравнения логистического роста

Пусть динамика популяции описывается логистическим уравнением

$$\frac{dx}{dt} = x \cdot \left(r - \frac{r}{K}x\right). \tag{\Pi2.1}$$

По какому закону будет изменяться во времени численность популяции x(t)? Для ответа на этот вопрос решим дифференциальное уравнение методом разделения переменных.

$$K\frac{dx}{x(K-x)} = r dt;$$

$$\left(\frac{1}{x} + \frac{1}{(K - x)}\right) dx = r dt;$$

 $(\ln x - \ln(K - x)) = rt + C'$ (численность x есть положительная величина, поэтому при интегрировании знак модуля в выражении $\ln(x)$ опускаем, C' — произвольная константа);

$$\ln \frac{x}{|K-x|} = rt + C';$$

$$\frac{x}{|K-x|} = Ce^{rt}, C = e^{C'};$$

$$\frac{x}{|K-x|} = Ce^{rt}.$$

Пусть в начальный момент времени численность равнялась $x(0) = x_0$. Определим величину константы C: $\frac{x_0}{|K - x_0|} = C$. Получим окончательную формулу зависимости численности популяции от времени: $\frac{x(t)}{|K - x(t)|} = \frac{x_0}{|K - x_0|}e^{rt}$, или

$$x(t) = \frac{Kx_0 e^{rt}}{K - x_0 + x_0 e^{rt}}.$$
 (II2.2)

Знак модуля можно опустить, поскольку величины $|K-x_0|$ и |K-x(t)| всегда одного знака.

Приложение 2.2. Анализ поведения решения логистического уравнения

Проанализируем поведение функции

$$y(x) = \frac{Ay_0 e^{Bx}}{A - y_0 + y_0 e^{Bx}},$$
 (II2.3)

где A, B, y_0 — положительные константы, $y(0) = y_0$. Заметим, что в случае $y_0 = A$ функция (П2.3) становится константой:

$$y(x) = \frac{A \cdot Ae^{Bx}}{A - A + Ae^{Bx}} = A.$$

Графиком является прямая y(x) = A (рис. П2.1,а).

Рассмотрим два других случая: $y_0 > A$, $y_0 < A$.

$y_0 > A$	$y_0 < A$	
Область определения		
$x \in (-\infty, +\infty)$, за исключением точки	$x \in (-\infty, +\infty)$.	
$x_{sg} = \frac{1}{B} \ln \left(\frac{y_0 - A}{y_0} \right).$	Знаменатель функции (П2.3) $A - y_0 + y_0 e^{Bx} > 0$ в ноль не	
Знаменатель функции (П2.3) в точ-	обращается	
ке $x = x_{sg}$ обращается в ноль. Ко-		
ордината x_{sg} отрицательна		

Горизонтальные асимптоты

1. v(x) = A.

При $x \to +\infty$ значение функции стремится к величине A.

$$\lim_{x \to +\infty} y(x) = \lim_{x \to +\infty} \frac{Ay_0 e^{Bx}}{A - y_0 + y_0 e^{Bx}} = \lim_{x \to +\infty} \frac{Ay_0}{\frac{A - y_0}{e^{Bx}} + y_0} = \frac{Ay_0}{y_0} = A,$$

так как
$$\lim_{x \to +\infty} \frac{A - y_0}{e^{Bx}} = 0$$
.

2.
$$y(x) = 0$$
.

При $x \to -\infty$ значение функции стремится к нулю:

$$\lim_{x \to -\infty} y(x) = \lim_{x \to -\infty} \frac{Ay_0 e^{Bx}}{A - y_0 + y_0 e^{Bx}} = 0, \text{ так как } \lim_{x \to -\infty} e^{Bx} = 0$$

Вертикальные асимптоты

$$x = x_{sg}$$

Экстремумы:
$$y(x)' = \left[\frac{Ay_0e^{Bx}}{A - y_0 + y_0e^{Bx}}\right]' = \frac{BAy_0e^{Bt} \cdot (A - y_0)}{\left(A - y_0 + y_0e^{Bx}\right)^2}$$

Производная y(x)' отрицательна на Производная y(x)' положивсей области определения, функция | тельна, функция | | | моноy(x) монотонно убывает, экстремумов не имеет

тонно возрастает, экстремумов не имеет

Точки перегиба

$$y(x)'' = \left[\frac{BAy_0e^{Bx} \cdot (A - y_0)}{\left(A - y_0 + y_0e^{Bx}\right)^2} \right]'' = \frac{B^2Ay_0e^{Bx} \cdot (A - y_0)}{\left(A - y_0 + y_0e^{Bx}\right)^3} \left(A - y_0 - y_0e^{Bx}\right)$$

Вторая производная y(x)'' в ноль не обращается, функция y(x) перегибов не имеет. Направление во-гнутости изменяется при переходе $x_p = \frac{1}{B} \ln \left(\frac{A - y_0}{v_0} \right)$. через разрыв кривой

$$\left(\frac{A}{2}, x_p\right), \text{ где}$$

$$x_p = \frac{1}{B} \ln \left(\frac{A - y_0}{y_0}\right).$$

Вторая производная y(x)'' обращается в 0, когда $\left(A-y_0-y_0e^{Bx}\right)=0$, т. е.

$$x_p = \frac{1}{B} \ln \left(\frac{A - y_0}{y_0} \right)$$
. При пере-

ходе через точку x_p вторая производная меняет знак, выполняются условия наличия точки перегиба: функция y(x) непрерывна и дифференцируема в точке $x=x_p$.

Значение функции y(x) в точке перегиба:

$$y(x_p) = \frac{Ay_0 e^{Bx_p}}{A - y_0 + y_0 e^{Bx_p}} = \frac{A}{2},$$

так как

$$e^{Bx_p} = e^{B \cdot \frac{1}{r} \ln \left(\frac{A - y_0}{y_0} \right)} = \frac{A - y_0}{y_0}.$$

Координата точки перегиба по оси абсцисс положительна,

$$x_p > 0$$
, если $\frac{A - y_0}{y_0} > 1$, т. е.

$$y_0 < \frac{A}{2}$$
. Если же $y_0 > \frac{A}{2}$, то

 $x_p < 0$, что означает наличие точки перегиба в области отрицательных значений аргумента x

График функции (П2.3) для разных значений параметра y_0 представлен на рис. П2.1.

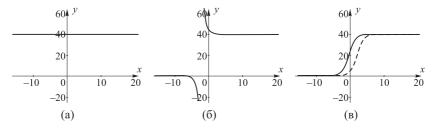


Рис. П2.1. График функции (П2.3) для разных значений y_0 : (a) $y_0 = A$; (б) $y_0 > A$; (в) $\frac{A}{2} < y_0 < A$ — сплошная кривая, $y_0 < \frac{A}{2}$ — пунктирная кривая; A = 40, B = 1

Решение уравнения логистического роста имеет вид (П2.3), где в качестве аргумента функции выступает время t, параметр A есть емкость среды K, параметр B отражает скорость роста популяции r, параметр y_0 есть начальное условие x_0 :

$$x(t) = \frac{Kx_0e^{rt}}{K - x_0 + x_0e^{rt}}.$$
 (II2.2*)

При рассмотрении динамики численности популяции имеет смысл рассматривать только положительные значения аргумента t>0.

Сформулируем итог исследования. При положительных значениях аргумента-времени t график функции (П2.2*) стремится к горизонтальной асимптоте x(t)=K. Если $x_0>K$, то график функции монотонно убывает и приближается к асимптоте x(t)=K сверху. Если же $x_0< K$, то график функции монотонно возрастает и приближается к асимптоте x(t)=K снизу. При этом если $x_0<\frac{K}{2}$, то на графике имеет место перегиб в момент времени

 $t_p = \frac{1}{r} \ln \left(\frac{K - x_0}{x_0} \right); \text{ а если } x_0 \geq \frac{K}{2} \text{, то график возрастает без перегиба.}$ (рис. $\Pi 2.2$).

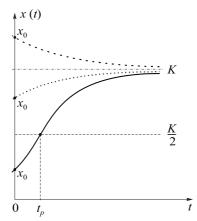


Рис. П2.2. График решения логистического уравнения для разных начальных условий

Приложение 3.1. Геометрическая прогрессия

Числовая последовательность $\{x_n\}$, в которой первый член отличен от нуля, а каждый последующий получен путем умножения предыдущего члена на постоянное ненулевое число q, называется геометрической прогрессией.

Пусть первый член прогрессии x_1 положителен. Тогда в случае q>1 последовательность является возрастающей, при 0< q<1—убывающей, при q<0— знакочередующейся, при q=1— стационарной.

Если |q|<1, то $x_n\to 0$ при $n\to\infty$ и геометрическая прогрессия *сходится*. В противном случае при |q|>1 прогрессия *расходится*. Если q=-1, прогрессия знакочередующаяся, но при этом не является ни сходящейся, ни расходящейся.

Приложение 3.2. Сравнительный анализ дифференциального и дискретного уравнений

	Дифференциальное	Дискретное
	уравнение	уравнение
Общий вид	$\frac{dx}{dt} = f(x)$	$N_{t+1} = F(N_t)$
	Переменные модел	пи
Независимая	Время t непрерывно	Время t дискретно
переменная		
Зависимые	w(t)	N/ N/
переменные	x(t)	N_{t+1}, N_t
Параметры	Неизменные в процесс	се решения величины
Решение уравне-	Непрерывная кривая	Последовательность
ния и его график	x(t)	точек $\{N_t\}$
Начальное усло-		
вие (значение	$x(0) = x_0$	$N(0) = N_0$
переменной	$\lambda(0) - \lambda_0$	$IV(0) - IV_0$
в момент $t=0$)		
Исследование стационарного состояния		
Терминология,	Точка покоя, особая	Неподвижная точка,
обозначение	точка, состояние	положение равновесия
	равновесия \bar{x}	N^*
Поиск стацио-	dx 0 x	$N_{t+1} = N_t = N^*$
нарного состоя-	$\left \frac{dx}{dt} = 0 \right \Rightarrow f(x) = 0$	
ния	\bar{x} — решение урав-	N^* — решение уравне-
	нения $f(x) = 0$	ния $N^* = F(N^*)$
Если при достаточно малом начальном отклонении от положения		
равновесия система никогда не уходит от положения равновесия,		
то такое положение равновесия называют устойчивым		
Отклонение от		
стационарного	$\xi(t) = x(t) - \overline{x}$	$q_{t+1} = N_{t+1} - N^*$
состояния		
Уравнение для	$\frac{d\xi}{dt} = f(\overline{x} + \xi)$	$q_{t+1} = F(N^* + q_t) - N^*$
отклонения	$\frac{dt}{dt}$ - $f(x+\zeta)$	$q_{t+1} = F(N + q_t) - N$

	Дифференциальное	Дискретное
	уравнение	уравнение
Разложение правой части в ряд Тейлора в окрест-	$\frac{d\xi}{dt} = f'(\overline{x})\xi +$	$q_{t+1} = F'(N^*)q_t + 1$
ности стационар- ной точки	$+\frac{1}{2}f''(\overline{x})\xi^2 + \dots$	$+\frac{1}{2}F''(N^*)q_t^2 + \dots$
Линеаризованное уравнение	$\frac{d\xi}{dt} = a \cdot \xi$ $a = f'(\overline{x})$	$q_{t+1} = a \cdot q_t$ $a = F'(N^*)$
Решение линей- ного уравнения для отклонения	$\xi(t) = \xi_0 \cdot e^{a \cdot t}$	$q_{t+1} = a \cdot q_t$
Критерий устойчивости по Ляпунову Поведения траектории вблизи ус-	1. Если $a < 0$, то $\xi(t) \rightarrow 0$ при $t \rightarrow \infty$, состояние равновесия устойчиво. 2. Если $a > 0$, то $\xi(t) \rightarrow \infty$ при $t \rightarrow \infty$, состояние равновесия неустойчиво. 3. Случай $a = 0$ требует дополнительных исследований Монотонное приближение к состоя-	1. Если $ a < 1$, то $q_t \to 0$ при $t \to \infty$, положение равновесия устойчиво. 2. Если $ a > 1$, то $q_t \to \infty$ при $t \to \infty$, положение равновесия неустойчиво. 3. Случаи $a = \pm 1$ и $a = 0$ требуют дополнительных исследований. 1. Монотонное приближение к состоянию
тории волизи устойчивого положения равновесия	олижение к состоянию равновесия $(a < 0)$	олижение к состоянию равновесия $(0 < a < 1)$ 2. Затухающие колебания $(-1 < a < 0)$
Поведения траектории вблизи неустойчивого положения равновесия	Монотонное удаление от состояния равновесия $(a > 0)$	1. Монотонное удаление от состояния равновесия $(a > 1)$ 2. Колебания с возрастающей амплитудой $(a < -1)$

Приложение 3.3. Лестница Ламерея

На рис. ПЗ.1 представлена зависимость численности популяции N_{t+1} от численности на предыдущем шаге N_t , задаваемая логистическим уравнением

$$N_{t+1} = N_t \cdot e^{r\left(1 - \frac{N_t}{K}\right)} = F(N_t).$$

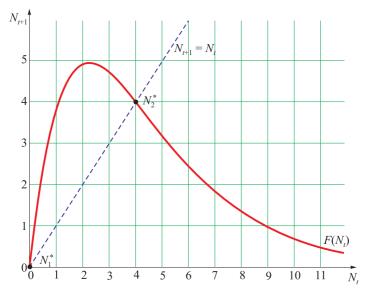


Рис. ПЗ.1. График функции, задающей дискретное уравнение логистического роста

Пунктирной линией представлена прямая $N_{t+1}=N_t$, которая в случае одинакового масштаба по осям является биссектрисой. В точках пересечения графика функции $F(N_t)$ с прямой $N_{t+1}=N_t$ выполняется равенство $N_{t+1}=N_t=F(N_t)$, что является определением точки равновесия. Таким образом, точки пересечения графиков N_1^* и N_2^* являются точками равновесия.

Пусть известна некоторая начальная численность популяции N_0 . Какую последовательность следующих значений численностей $\{N_1, N_2, N_3, ...\}$ задает логистическое уравнение? Определить это можно с помощью построения так называемой лестницы Ламерея.

- **Ш**АГ **1.** Значение N_1 определяется равенством $N_1 = F(N_0)$, т. е. пара значений $\left(N_0, N_1\right)$ является координатами соответствующей точки на графике функции $F(N_t)$ (рис. ПЗ.2,а). Отложим на координатной плоскости (t, N_t) точки $(0, N_0)$ и $(1, N_1)$ (рис. ПЗ.2,б).
- **Ш**АГ **2.** Следующее значение численности N_2 определяется из соотношения $N_2 = F(N_1)$ (рис. ПЗ.2,в). На графике величина N_1 из значения функции должна стать значением аргумента: проводим перпендикуляр от точки $(0,N_1)$ до пересечения с биссектрисой, затем опускаем перпендикуляр до оси абсцисс N_t .
- **Ш**АГ **3.** Повторяем *шаг 1*. Теперь наша начальная точка точка N_1 , значение численности N_2 есть ордината точки на графике функции $F(N_t)$: $(N_1, F(N_1))$ (рис. $\Pi 3.3$,а, б).
- **Ш**АГ **4.** Повторяем *шаг* 2. Значение N_2 переносим на ось абсцисе с помощью отражения от биссектрисы (рис. $\Pi 3.3$,в).
- **Ш**АГ **5.** Повторяем *шаг 1*. Следующее значение численности N_3 определяем как ординату точки на графике функции F: $(N_2, F(N_2))$ (рис. Π 3.4,a, б).

Продолжая повторять шаги построения лестницы Ламерея, получим последовательность значений численности популяции в разные моменты времени. В рассмотренном примере мы получили, что со временем численность в виде затухающих колебаний сходится к равновесному значению *K* (рис. ПЗ.4–ПЗ.7, ПЗ.7,в).

Характер последовательности значений численности популяции, полученной при помощи лестницы Ламерея, может быть монотонным, циклическим, колебательным и хаотическим. Каким он бу-

дет, в каждом конкретном случае определяется формой кривой $F(N_t)$. В свою очередь, форму кривой определяют значения параметров функции $F(N_t)$ (скорость прироста r и емкость экологической ниши K).

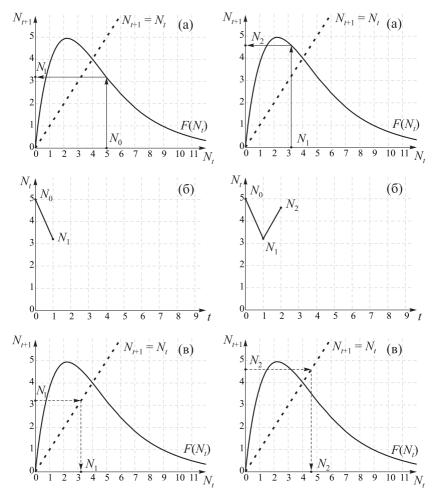


Рис. П3.2. Построение лестницы Ламерея

Рис. П3.3. Построение лестницы Ламерея. Продолжение

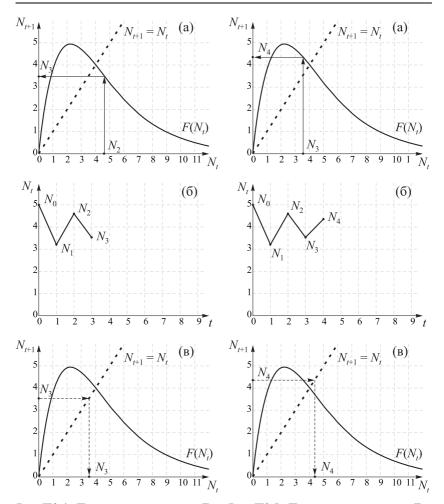


Рис. П3.4. Построение лестницы Ламерея. Продолжение

Рис. II3.5. Построение лестницы Ламерея. Продолжение

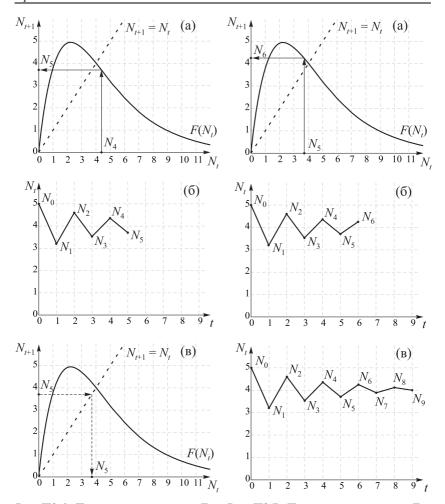


Рис. ПЗ.6. Построение лестницы Ла- Рис. ПЗ.7. Построение лестницы Ламерея. Продолжение

мерея. Окончание

Приложение 4. Общее решение системы двух обыкновенных линейных уравнений с постоянными коэффициентами

Рассмотрим систему линейных дифференциальных уравнений с постоянными коэффициентами a, b, c, d:

$$\begin{cases} \frac{dx}{dt} = ax + by, \\ \frac{dy}{dt} = cx + dy. \end{cases}$$
 (П4.1)

Анализ системы уравнений начинается с нахождения стационарных состояний. У систем вида (П4.1) особая точка единственна, ее координаты — (0, 0). Исключение составляет вырожденный случай, когда уравнения системы являются линейно-зависимыми и их можно представить в виде

$$\begin{cases} \frac{dx}{dt} = ax + by, \\ \frac{dy}{dt} = kax + kby. \end{cases}$$
 (П4.1*)

В этом случае все пары $(\overline{x},\overline{y})$, удовлетворяющие соотношению $\overline{y}=-\frac{a\overline{x}}{b}$, являются стационарными точками системы (П4.1*). В частности, точка $(0,\ 0)$ также является стационарной для системы (П4.1*). На фазовой плоскости в данном случае имеем прямую с коэффициентом наклона $-\frac{a}{b}$, проходящую через начало координат, каждая точка которой является особой точкой системы (П4.1*). В дальнейшем будем рассматривать только линейно-независимые уравнения.

Напомним, что решением системы уравнений (П4.1) на некотором интервале времени является пара функций x(t), y(t), резуль-

татом подстановки которых в оба уравнения системы является верное тождество на том же временном интервале.

Какими же должны быть функции x(t), y(t), «претендующие» на то, чтобы быть решением исследуемой системы уравнений? После подстановки функций-«кандидатов» в исходные уравнения, в левой части будут стоять их производные, а в правой — сами функции. При этом должно выполнять равенство между частями уравнения. Только экспоненциальная функция $f(z) = e^z$ остается после дифференцирования функцией того же вида. Таким образом, общее решение системы уравнений (П4.1) необходимо искать среди функций вида

$$x(t) = A \cdot e^{\lambda t}, \quad y(t) = B \cdot e^{\lambda t},$$
 (П4.2)

где A, B, λ — некоторые неизвестные константы. Определив значения этих трех неизвестных, получим общее решение системы. Подставим функции (П4.2) в исходную систему уравнений:

$$\begin{cases} \frac{dx}{dt} = A \cdot \lambda \cdot e^{\lambda t} = a \cdot \left(A \cdot e^{\lambda t} \right) + b \cdot \left(B \cdot e^{\lambda t} \right), \\ \frac{dy}{dt} = B \cdot \lambda \cdot e^{\lambda t} = c \cdot \left(A \cdot e^{\lambda t} \right) + d \cdot \left(B \cdot e^{\lambda t} \right). \end{cases}$$

Сокращая на ненулевой множитель $e^{\lambda t}$, получаем

$$\begin{cases} A \cdot \lambda = a \cdot A + b \cdot B, \\ B \cdot \lambda = c \cdot A + d \cdot B. \end{cases}$$
 (II4.3)

Система ($\Pi 4.3$) представляет собой алгебраическую систему однородных линейных уравнений относительно неизвестных A, B:

$$\begin{cases} (a - \lambda) \cdot A + b \cdot B = 0, \\ c \cdot A + (d - \lambda) \cdot B = 0. \end{cases}$$
 (II4.4)

Система уравнений (П4.4) имеет ненулевое решение лишь в том случае, когда определитель, составленный из коэффициентов системы, равен нулю:

$$\begin{vmatrix} (a-\lambda) & b \\ c & (d-\lambda) \end{vmatrix} = 0. \tag{\Pi4.5}$$

Раскрывая определитель (П4.5), получаем *характеристиче-ское уравнение*

$$\lambda^2 - (a+d)\lambda + (ad-bc) = 0. \tag{\Pi4.6}$$

Квадратное уравнение (П4.6) имеет два решения: λ_1 и λ_2 , при которых возможны ненулевые значения констант для решения (П4.2) системы уравнений. *Общее решение* системы двух дифференциальных уравнений (П4.1) является суммой двух линейнонезависимых частных решений:

$$\begin{cases} x(t) = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}, \\ y(t) = C_1 \chi_1 e^{\lambda_1 t} + C_2 \chi_2 e^{\lambda_2 t}, \end{cases}$$
 (II4.7)

где константы $C_{1,2}$ определяются начальными условиями задачи:

$$\chi_1 = \frac{\lambda_1 - a}{b} = \frac{c}{\lambda_1 - d}, \quad \chi_2 = \frac{\lambda_2 - a}{b} = \frac{c}{\lambda_2 - d}.$$

Рассмотрим, какой характер поведения будут демонстрировать функции (П4.7) в зависимости от значений параметров $\lambda_{1,2}$.

Седло. При действительных значениях $\lambda_{1,2}$ каждое слагаемое в выражениях для общего решения (П4.7) системы дифференциальных уравнений представляет собой монотонную функцию, возрастающую (для положительного значения λ) или убывающую (для отрицательного значения λ). В данном случае в общую формулу и для x(t), и для y(t) входят один возрастающий и один убывающий член. Таким образом, на временном интервале от $-\infty$ до $+\infty$ фазовые траектории всегда будут сначала приближаться к стационарной точке (0,0), а затем от нее удаляться.

Неустойчивый узел. При положительных значениях $\lambda_{1,2}$ решение (П4.7) системы представляет собой монотонную функцию, каждая входящая в него экспонента возрастает. С течением времени фазовые траектории удаляются от стационарной точки (0,0).

Устойчивый узел. При отрицательных значениях $\lambda_{1,2}$ решение (П4.7) системы представляет собой монотонную функцию, каждая входящая в него экспонента убывает. С течением времени фазовые траектории стремятся к стационарной точке (0,0).

Фокус. Пусть корни характеристического уравнения принимают комплексно-сопряженные значения:

$$\lambda_{1,2} = u \pm i \cdot v$$
, где $u = \text{Re } \lambda = a + d$, $v = \text{Im } \lambda = \sqrt{(a+d)^2 - 4(ad-bc)}$.

Тогда решение (П4.7) примет вид

$$\begin{cases} x(t) = C_1 e^{(u+iv)t} + C_2 e^{(u-iv)t}, \\ y(t) = C_1 \frac{u+iv-a}{b} e^{(u+iv)t} + C_2 \frac{u-iv-a}{b} e^{(u-iv)t}. \end{cases}$$
(II4.8)

Для того чтобы получить ясное представление о поведении функций x(t) и y(t), преобразуем (П4.8). Константы $C_{1,2}$ определяются начальными условиями. Подставим $x(0) = x_0$, $y(0) = y_0$ в решение (П4.8):

$$\begin{cases} x_0 = C_1 + C_2, \\ y_0 = C_1 \frac{u + iv - a}{b} + C_2 \frac{u - iv - a}{b}. \end{cases}$$
 (II4.9)

Решая систему (П4.9), получим значения констант:

$$\begin{cases} C_1 = \frac{vx_0 - i(x_0a - x_0u + y_0b)}{2v}, \\ C_2 = \frac{x_0v + i(x_0a - x_0u + y_0b)}{2v}. \end{cases}$$

Подстановка $C_{1,2}$ в выражения (П4.8) и приведение подобных членов дает:

$$\begin{cases} x(t) = e^{ut} \left(\frac{x_0}{2} \left(e^{ivt} + e^{-ivt} \right) - i \left(\frac{x_0(a-u) + y_0 b}{2v} \right) \left(e^{ivt} - e^{-ivt} \right) \right), \\ y(t) = e^{ut} \left(\frac{y_0}{2} \left(e^{ivt} + e^{-ivt} \right) + i \left(\frac{v^2(a-u)^2 x_0 + y_0 b(a-u)}{2vb} \right) \left(e^{ivt} - e^{-ivt} \right) \right). \end{cases}$$

Воспользуемся формулой Эйлера для представления комплексного числа в тригонометрической форме:

$$e^{ivt} + e^{-ivt} = \cos vt + i \sin vt + \cos vt - i \sin vt = 2 \cos vt$$
,
 $e^{ivt} - e^{-ivt} = \cos vt + i \sin vt - \cos vt + i \sin vt = 2i \sin vt$.

В результате получаем окончательный вид решения системы дифференциальных уравнений:

$$\begin{cases} x(t) = e^{ut} \left(x_0 \cos vt + \left(\frac{x_0(a-u) + y_0 b}{v} \right) \sin vt \right), \\ y(t) = e^{ut} \left(y_0 \cos vt - \left(\frac{v^2(a-u)^2 x_0 + y_0 b(a-u)}{v b} \right) \sin vt \right). \end{cases}$$
(II4.10)

Первый множитель в выражении (П4.10) при $t\to\infty$ либо стремится к бесконечности (при положительных значениях u=a+d), либо стремится к 0 (при отрицательных значениях u=a+d, устойчивый фокус). Второй множитель является ограниченной величиной ($|\sin vt| \le 1$, $|\cos vt| \le 1$, a, b, u, v, x_0 , y_0 — константы), значения которой меняются периодически. Таким образом, решения x(t) и y(t) либо бесконечно удаляются от стационарного состояния $\overline{x}=0$, $\overline{y}=0$, либо стремятся к нему. Однако в отличие от рассмотренных случаев седла и узла поведение решений x(t), y(t) не является монотонным, представляет собой затухающие (устойчивый фокус), или нарастающие колебания (неустойчивый фокус),

поскольку множитель e^{ut} обеспечивает либо постоянно уменьшающуюся, либо постоянно увеличивающуюся с течением времени амплитуду колебаний.

Подчеркнем, что и для особой точки типа yзел, и для особой точки типа $\phi o \kappa y c$ устойчивость определяется знаком величины a+d.

Центр. Пусть корни характеристического уравнения принимают чисто мнимые значения: $\lambda_{1,2} = \pm i \cdot v$. Тогда аналогично рассмотренному выше случаю фокуса решение системы дифференциальных уравнений имеет вид (П4.10) с u=0:

$$\begin{cases} x(t) = \left(x_0 \cos vt + \left(\frac{x_0(a-u) + y_0 b}{v}\right) \sin vt\right), \\ y(t) = \left(y_0 \cos vt - \left(\frac{v^2(a-u)^2 x_0 + y_0 b(a-u)}{v b}\right) \sin vt\right). \end{cases}$$
 (II4.11)

Выражения в правых частях (П4.11) представляют собой ограниченные периодические функции. Амплитуда колебаний определяется константами $a,\ b,\ u,\ v,\ x_0,\ y_0$. Таким образом, решения x(t) и y(t) совершают колебания около стационарного значения $\overline{x}=0$, $\overline{y}=0$, не удаляясь от него, но и не приближаясь (для каждой начальной точки амплитуда колебаний постоянна).

Список литературы

Основная литература

- Ризниченко Г. Ю. Лекции по математическим моделям в биологии. Изд. 2-е, испр. и доп. М.–Ижевск: НИЦ «Регулярная и хаотическая динамика», 2011. 560 с.
- Мятлев В. Д., Панченко Л. А., Ризниченко Г. Ю., Терехин А. Т., Теория вероятностей и математическая статистика. Математические модели: учебное пособие для студентов высших учебных заведений. Часть П. Моделирование динамики биологических процессов. М.: Издательский центр «Академия», 2009. 320 с.

Дополнительная литература

- Ризниченко Г. Ю. Лекции по математическим моделям в биологии. Часть 1. М.–Ижевск: НИЦ «Регулярная и хаотическая динамика», 2002. 232 с.
- Ризниченко Г. Ю., Рубин А. Б. Биофизическая динамика продукционных процессов. М.–Ижевск: Институт компьютерных исследований, 2004. 464 с.
- Рубин А. Б. Биофизика: учебник. В 3 т. Т. І. Теоретическая биофизика. М.–Ижевск: Институт компьютерных исследований, 2013. 472 с.
- Rubin A., Riznichenko G. Mathematical Biophysics. Springer, New York, 2014. 273 p.
- Гроссман С., Тернер Дж. Математика для биологов. М.: Высш. школа, 1983. 383 с.
- Понтрягин Л. С. Обыкновенные дифференциальные уравнения. М.: Наука, 1970. 332 с.
- Филиппов А. Ф. Сборник задач по дифференциальным уравнениям. М.: Наука, 1985. 128 с.